

20 YEARS of

INNOVATION

SDRAM PLL Tuning

Copyright © 2003 Altera Corporation - Confidential

SDRAM PLL Tuning

- Objective: Find the Correct Skew Needed for the SDRAM Clock with Respect to the System Clock
- Two Methods:
 - "Scientific" vs. "Trial and Error"

Design Recommendations

- Use "Zero Delay Buffer" Mode of the PLL
 - Allows Control of Phase of External Clock with Respect to the Input Clock
- SDRAM Clock Output of PLL (e0)
- SDRAM Pins:
 - Use Fast I/O's Settings
 - Group Together to Minimize Skew

First, Read the Datasheets

- SDRAM (MT48LC4M32B2-7)
 - Data In: tsu = 2 ns, th = 1 ns
 - Data Out: toh = 2.5 ns, thz/tac = 5.5 ns (CL=3)
 - 2.5 5.5 ns (Data Undefined)

AC CHARACTERISTICS PARAMETER			-6		-7			
		SYMBOL	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from CLK	CL = 3	^t AC (3)		5.5		5.5	ns	
(pos. edge)	CL = 2	^t AC (2)		7.5		8	ns	
	CL = 1	^t AC (1)		17		17	ns	
Address hold time	•	^t AH	1		1		ns	
Address setup time		^t AS	1.5		2		ns	
CLK high-level width		tCH	2.5		2.75		ns	
CLK low-level width	_	t _{CL}	2.5		2.75		ns	
Clock cycle time	CL = 3	tCK (3)	6		7		ns	23
	CL = 2	^t CK (2)	10		10		ns	23
	CL = 1	^t CK (1)	20		20		ns	23
CKE hold time		tCKH	1		1		ns	
CKE setup time		tCKS	1.5		2		ns	
CS#, RAS#, CAS#, WE#, DQM hold time		tCMH	1		1		ns	
CS#, RAS#, CAS#, WE#, DQM setup time		^t CMS	1.5		2		ns	
Data-in hold time		^t DH	1		1		ns	
Data-in setup time		tDS	1.5		2		ns	
Data-out high-impedance time	CL = 3	^t HZ (3)		5.5		5.5	ns	10
	CL = 2	^t HZ (2)		7.5		8	ns	10
	CL = 1	tHZ(1)		17		17	ns	10
Data-out low-impedance time		^t LZ	1		1		ns	
Data-out hold time		tOH	2		2.5		ns	

READ - WITHOUT AUTO PRECHARGE¹

WRITE - WITHOUT AUTO PRECHARGE¹ T0 T2 T6 T7 T8 CLK tcks i tckh X/X PRECHARGE X WRITE NOP NOP ACTIVE NOP NOP t_{CMS} ¢CMΗ DQM 0-3 A0-A9, A11 COLUMN m3) ^tAH ALL BANKs ROW DISABLE AUTO PRECHARGE SINGLE BANK BA0, BA1 2 BANK t_{DS} tos tos t_{DS} DIN m + 2Din m + 3twR2 †RCD ŧдР t_{RAS} t_{RC}

Cyclone Parameters

- FPGA (Cyclone 1C20-7)
 - Column I/O's and Global Clock
 - Data In: tsu = 2.4 ns, th = 0 ns
 - Data Out: toutco = 2 ns (min) 4.4 ns (max)
 - 2.0 4.4 ns (Data Undefined)

Table 4–36. EP1C20 Column Pin Global Clock External I/O Timing Parameters								
Cumbal	-6 Spee	-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		
Symbol	Min	Max	Min	Max	Min	Max	Unit	
t _{INSU}	2.226		2.406		2.585		ns	
t _{IN H}	0.000		0.000		0.000		ns	
t _{outco}	2.000	3.926	2.000	4.358	2.000	4.795	ns	

Calculate the Window - Cyclone

SDRAM Clock Can Lead System Clock by: Minimum of:

```
t_{coutmin(FPGA)} - t_{h(SDRAM)} = 2 \text{ ns} - 1 \text{ ns} = 1 \text{ ns}

t_{clk} - t_{hz(SDRAM)} - t_{su(FPGA)} = 10 \text{ ns} - 5.5 \text{ ns} - 2.4 \text{ ns} = 2.1 \text{ ns}
```

SDRAM Clock Can Lag System Clock by: Minimum of:

```
toh(SDRAM) - th(FPGA) = 2.5 \text{ ns} - 0 \text{ ns} = 2.5 \text{ ns}

tclk - tcoutmax(FPGA) - tsu(SDRAM) = 10 \text{ ns} - 4.4 \text{ ns} - 2 \text{ ns} = 3.6 \text{ ns}
```

■ Window Between +1 ns to – 2.5 ns

Stratix Parameters

- FPGA (Stratix 1S10-6)
 - Column I/O's and Global Clock
 - Data In: tsu = 1.75 ns, th = 0 ns
 - Data Out: toutco = 2 ns(min) 5.5 ns(max)
 - 2.0 5.5 ns (Data Undefined)

Table 4–54. EP1S10 Column Pin Global Clock External I/O Timing Parameters								
Cumhal	-5 Spee	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		
Symbol	Min	Max	Min	Max	Min	Max	Unit	
t _{INSU}	1.699		1.748		1.993		ns	
t _{INH}	0.000		0,000		0.000		ns	
t _{outco}	2.000	5.143	2.000	5.504	2.000	6.308	ns	

Calculate the Window - Stratix

SDRAM Clock Can Lead System Clock by: Minimum of:

```
t_{coutmin(FPGA)} - t_{h(SDRAM)} = 2 \text{ ns} - 1 \text{ ns} = 1 \text{ ns}

t_{clk} - t_{hz(SDRAM)} - t_{su(FPGA)} = 10 \text{ns} - 5.5 \text{ ns} - 1.75 \text{ ns} = 2.75 \text{ ns}
```

SDRAM Clock Can Lag System Clock by: Minimum of:

```
toh(SDRAM) - th(FPGA) = 2.5 \text{ ns} - 0 \text{ ns} = 2.5 \text{ ns}

tclk - tcoutmax(FPGA) - tsu(SDRAM) = 10 \text{ ns} - 5.5 \text{ ns} - 2 \text{ ns} = 2.5 \text{ ns}
```

- Window = +1 ns to -2.5 ns
 - Same As Cyclone at 100 MHz
 - Windows Different at Higher Frequencies

PLL Tuning

- Only a 3.5 ns Window (at 100 MHz)
 - +1 ns to -2.5 ns
- Center the Phase Shift in the Middle of Window
 - -0.75 ns Phase Shift
- Window Can Change, Dependent On:
 - SDRAM
 - SDRAM CAS Latency
 - FPGA Device:
 - Global Clock Versus Regional Clock
 - Column Versus Row I/O's
 - Speed Grade

PLL Tuning (100 MHz)

Setting Up Clock Skew

- PLL Setup
 - Zero Delay Buffer
 - Use Input Clock for System Clock
 - Use e0 for SDRAM Clock
 - Add -0.75 ns Phase Shift

Clock Setup

Set Phase Shift

Shift Clock e0

Skew After Compile

20 YEARS of **INNOVATION**

Overtuning

Copyright © 2003 Altera Corporation - Confidential

Overtuning Symptoms

- Caused by "Trail and Error" Method
- False Tuning Window
- Single Read/Writes to SDRAM Work
- Running Code From SDRAM Fails
 - Best Way to Test Tuning
- DMA Transfer Provide Skewed Data

This Causes the SDRAM to Provide the Data One Clock Cycle Early

Overtuning (50 MHz)

Overtuning: Data Received Early

Conclusions

- Tight Control is Needed for the SDRAM Clock and System Clock For System to Function Correctly
- Verify PLL's are Correct by Executing Software from SDRAM or Using DMA to Read/Write

